Statistical Functions
Last updated
Last updated
CalcTree supports a wide set of to help you analyze numerical datasets, arrays, or matrix values. These are useful in engineering QA, design checks, measurement summaries, and material variability analysis.
You can pass vectors directly (e.g. [10, 15, 20]
) or link to values from table columns in your page.
mean(x)
Arithmetic average
mean([1, 2, 3])
→ 2
median(x)
Median value
median([1, 5, 10])
→ 5
mode(x)
Most frequent value(s)
mode([1, 2, 2, 3])
→ [2]
min(x)
Minimum value
min([4, 2, 8])
→ 2
max(x)
Maximum value
max([4, 2, 8])
→ 8
sum(x)
Total sum
sum([1, 2, 3])
→ 6
prod(x)
Product of all values
prod([2, 3, 4])
→ 24
count(x)
Number of elements
count([10, 20, 30])
→ 3
quantileSeq(x, p [, sorted])
p-th quantile(s)
quantileSeq([1, 2, 3, 4], 0.25)
→ 1.75
std(x)
Standard deviation
std([2, 4, 4, 4, 5, 5, 7, 9])
variance(x)
Variance
variance([1, 2, 3])
→ 0.666
mad(x)
Median Absolute Deviation
mad([1, 1, 2, 2, 4, 6, 9])
→ 2
cumsum(x)
Cumulative sum
cumsum([1, 2, 3])
→ [1, 3, 6]
corr(a, b)
Correlation coefficient between two arrays
corr([1, 2, 3], [2, 4, 6])
→ 1
You can pass arrays using:
Inline lists: [value1, value2, value3]
Column values from a table
Most functions return a unitless scalar, unless your input values carry units (e.g., sum([1 m, 2 m])
→ 3 m
)
If using multi-column data, apply functions separately per column or row using map()
or extract with row()
, column()
, etc.
📘 Looking for more functions? CalcTree’s expression engine is powered by . For a full list of available functions, visit the . Most functions listed there are supported in CalcTree unless otherwise noted.